
Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum Handbook – 3rd edition

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Other publications by Van Haren Publishing

Van Haren Publishing (VHP) specializes in titles on Best Practices, methods and standards
within four domains:
 - IT and IT Management
 - Architecture (Enterprise and IT)
 - Business Management and
 - Project Management

Van Haren Publishing is also publishing on behalf of leading organizations and companies:
ASLBiSL Foundation, BRMI, CA, Centre Henri Tudor, CATS CM, Gaming Works, IACCM,
IAOP, IFDC, Innovation Value Institute, IPMA-NL, ITSqc, NAF, KNVI, PMI-NL, PON,
The Open Group, The SOX Institute.

Topics are (per domain):

IT and IT Management
ABC of ICT
ASL®
CMMI®
COBIT®

e-CF
ISO/IEC 20000
ISO/IEC 27001/27002
ISPL
IT4IT®
IT-CMFtm

IT Service CMM
ITIL®
MOF
MSF
SABSA
SAF
SIAMtm

TRIM
VeriSMtm

Enterprise Architecture
ArchiMate®
GEA®
Novius Architectuur
Methode
TOGAF®

Project Management
A4-Projectmanagement
DSDM/Atern
ICB / NCB
ISO 21500
MINCE®
M_o_R®
MSP®
P3O®
PMBOK ® Guide
Praxis®
PRINCE2®

Business Management
BABOK ® Guide
BiSL® and BiSL® Next
BRMBOKTM

BTF
CATS CM®
DID®
EFQM
eSCM
IACCM
ISA-95
ISO 9000/9001
OPBOK
SixSigma
SOX
SqEME®

For the latest information on VHP publications, visit our website: www.vanharen.net.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum Handbook

3rd edition

Nader K. Rad

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Colophon
Title: Agile Scrum Handbook – 3rd edition
Author: Nader K. Rad
Text editor: Stephen Brightman
Publisher: Van Haren Publishing, ‘s-Hertogenbosch-NL,

www.vanharen.net
DTP: Coco Bookmedia, Amersfoort
ISBN Hard copy: 978 94 018 0759 3
ISBN eBook (pdf): 978 94 018 0760 9
ISBN ePUB: 978 94 018 0761 6
Edition:	 Third	edition,	first	impression,	April	2021

Copyright: Nader K. Rad & Van Haren Publishing

For further information on Van Haren Publishing, e-mail to: info@vanharen.net.

Copyright:
All rights reserved. No part of this publication may be reproduced in any form by
print,	photo	print,	microfilm	or	any	other	means	without	written	permission	by	the	
publisher.

Trademark notices
DSDM® is a registered trademark of Agile Business Consortium Limited.
ITIL®, MOV®, MSP®,	PRINCE2®	and	PRINCE2	Agile® are registered trademarks of
AXELOS Limited.
PMBOK® Guide is a registered trademark of The Project Management Institute, Inc.
Nexus™ is a trademark of Scrum.org.
Scrum@Scale™ is a trademark of Scrum Inc.
LeSS™ is a trademark of The LeSS Company B.V.
SAFe™ is a trademark of Scaled Agile Inc.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Contents

1. THE AGILITY CONCEPT . 1

1.1 The Development Approaches .. 2
1.1.1 The predictive approach ... 2
1.1.2	 The	adaptive	approach ... 4

1.2	 Selecting	a	Development	Approach ... 8
1.3 Is Agile Only Suitable for IT Development? ... 9

1.3.1 Projects .. 9
1.3.2	 Programs ... 10
1.3.3 Operations .. 10

1.4 Is Agile Faster? ... 10
1.5 Is Agile New? .. 11

2. SCRUM . 13

2.1	 Scrum	as	a	Framework ... 13
2.2	 Scrum	as	a	Wrapper .. 14
2.3	 The	Scrum	Structure ... 14

2.3.1	 People .. 15
2.3.2	 Events ..24
2.3.3	 Artifacts ...36

2.4	 Scaled	Scrum ..46
2.4.1	 Roles ... 47
2.4.2	 Events .. 49
2.4.3	 Artifacts ... 51

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

VI

3. CRYSTAL . 53

3.1 The Cockburn Scale ...53
3.2	 Frequent	Release ...54
3.3 Osmotic Communication ..54
3.4	 Walking	Skeleton ... 55
3.5 Information Radiators .. 55

3.5.1 Escaped defects ... 57
3.5.2	 Progress	information ..58
3.5.3 Niko-Niko calendar ..63

4. EXTREME PROGRAMMING . 65

4.1 Daily Routine ..65
4.1.1 Pairing ..65
4.1.2	 Assignment ...66
4.1.3 Design ..66
4.1.4	 Write	test ... 67
4.1.5 Code ... 67
4.1.6 Refactor ...68
4.1.7 Integrate ...68
4.1.8 Go home! ... 69
4.1.9 Stand-up meetings .. 69
4.1.10 Tracking ... 69
4.1.11 Risk management .. 69

4.2	 Spiking ... 70
4.3 The Nature of Items .. 70

4.3.1 The two rules .. 71
4.3.2	 INVEST ...72
4.3.3 User stories ...72

4.4 Estimating ... 74
4.4.1 Ideal-time .. 74
4.4.2	 Story	points ... 76
4.4.3 T-shirt sizes ...77
4.4.4 Velocity .. 78
4.4.5 Planning poker ...82
4.4.6 Triangulation ..85
4.4.7	 Affinity	estimation ...86
4.4.8 Re-estimating ... 87

4.5 Feedback loops .. 87
4.6 The Planning Onion ...89

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

VII

5. DSDM® . 91

5.1 Project Constraints ..92
5.2	 Upfront	Planning ... 93
5.3	 MoSCoW	Prioritization ..94
5.4 Exceptions ...95
5.5 Self-Organization ...95
5.6 Contract Types ...96

6. KANBAN . 97

6.1 Visualizing ... 97
6.2	 Limiting	WIP ...98
6.3 Pull vs. Push ..99

7. PHILOSOPHIZING! . 105

7.1 eXtreme Programming Ideas ..105
7.1.1 Customer bill of rights ..105
7.1.2	 Programmer	bill	of	rights ... 107
7.1.3 Values ...109

7.2	 DSDM®	Ideas ... 110
7.2.1	 Philosophy ... 110
7.2.2	 Principles ... 111

7.3 Scrum Ideas .. 113
7.3.1 Pillars ... 113
7.3.2	 Values ... 114

7.4 The Agile Manifesto ... 115
7.4.1 Statement #1 .. 115
7.4.2	 Statement	#2 .. 116
7.4.3 Statement #3 .. 116
7.4.4 Statement #4 .. 117
7.4.5 The Principles ... 117

ABOUT THE AUTHOR . 121

INDEX . 123

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

1. The Agility Concept

There are many myths and misleading concepts about Agile, starting with the answer
to	the	most	basic	question	in	this	context:	What is Agile?

What	you	may	often	hear	is	ambiguous	statements	such	as	“Agile	is	a	mindset”.	Agile,	
like almost everything else, needs a particular mindset, but it’s not correct to say that
Agile is	a	mindset.	Saying	that	“Agile	is	a	mindset”	has	only	one	practical	consequence:	
It lets certain people do whatever they want and just call it Agile because it’s fashiona-
ble these days.

Another common problem in our community is the illusion of the external enemy.
Those of you familiar with the way authoritarian systems work know that they always
need to have an enemy. It helps cover the gaps they have in their system by creating
distractions, and creates a common goal to cover the lack of real, achievable internal
goals. It’s sad to see that many Agile practitioners have the same approach, usually for
the personal gain of a few leaders.

It’s	best	for	your	professional	 life	to	be	open	to	different	ideas	and	learn	from	all	of	
them	without	you	becoming	a	cult	member.	This	approach	is	the	first	principle	in	the	
Nearly Universal Principles of Projects: https://nupp.guide

So, let’s start by talking about the real nature of Agile.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

2 Agile Scrum Handbook

1.1 The Development Approaches

When	you’re	developing	a	piece	of	software,	the	following	steps	are	done	in	one	way	
or another, either for separate features or for the solution as a whole:
• Analyze
• Design
• Construct
• Integrate
• Test

You can, of course, use other names for these steps, merge them into fewer steps, or
split	 them	into	more	–	 that’s	all	fine.	These	steps	can	be	called	delivery processes,
which	are	different	from	management	processes	such	as	planning	and	monitoring.

So how are you going to arrange and run these processes? Think about a few options
before reading the rest of this chapter.

1.1.1 The predictive approach
You probably have a few options in mind, and they all belong to one of the two generic
forms, which we will discuss next. Each of these options can be called a development
lifecycle or a development approach.

The	next	figure	shows	one	generic	development	lifecycle.

In this lifecycle, each process is completed before we proceed to the next one:
1.	 First,	we	completely	analyze	the	requirements	and	decide	what	we	want	to	have	in	

the solution.
2.	We	then	design	the	architecture	of	the	whole	solution	and	find	out	the	best	way	to	

form the features.
3. Programmers then start building the units.
4. The units are then integrated into one solution.
5.	 Finally,	the	solution	is	fully	tested	and	errors	are	fixed.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

1. The Agility Concept 3

Obviously, the steps can overlap; e.g., you don’t need to wait until all units are complete
before integrating and testing them. As a result, the same lifecycle would look like the
following	figure	with	overlaps:

This	 is	 not	 fundamentally	 different	 from	 the	 previous	 lifecycle,	 as	 we	 still	 have	 a	
sequence	of	development	processes	as	the	main	driver.

This type of lifecycle is based on an initial investigation to understand what we need
to	produce.	We	have	an	upfront	specification,	an	upfront	design,	and	consequently,	an	
upfront plan. That’s why some people call it plan-driven development. Furthermore,
we try to predict what we need and how it can be produced, and that’s why a common
name for it is predictive development.

Predictive lifecycles are the normal and appropriate way to develop many types of
projects,	such	as	construction.	You	plan	and	design	first,	and	then	follow	those	optimi-
zed, well-formed plans and designs. However, this is not a comfortable way of working
in some projects, such as typical IT development projects. You can spend a lot of time
specifying	and	analyzing	 the	 requirements,	 and	 then	base	everything	else	on	 that.	
What	happens	next,	though?	The	customer	won’t	be	happy	when	they	see	the	result!	
They will ask for changes, and changes are expensive in this lifecycle because you may
have to revise all the previous work.

As it’s commonly remarked in the IT industry, the customer doesn’t know what they
want until they see the product. But when do they see the product in a predictive life-
cycle? Towards the end of the project – at which point, the cost of change is at its maxi-
mum.

The Agile community usually refers to predictive systems as waterfall systems.
However, it’s not a good idea to use this term because it has developed a negative
connotation, and its use would bias an otherwise rational conversation about the
development approaches.

Analyze

Design

Construct

Integrate

Test

High-level

project plan
Detailed

project plan

Scope

prediction

Architecture

prediction

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

4 Agile Scrum Handbook

1.1.2 The adaptive approach
To overcome the problems that IT development projects have with predictive lifecy-
cles,	we	can	sacrifice	the	comfort	and	structure	of	a	predictive	system	and	use	a	diffe-
rent lifecycle that creates the product incrementally, to check it with the customers
and end-users along the way. This is a luxury we have in IT development projects that
not everyone else has. Think about a construction project: There are no meaningful
increments for it, and the product is not usable until the end.

To be fair, this disadvantage of construction projects (where we can’t build them incre-
mentally) is balanced with the fact that if you start a project to build a hospital, it
doesn’t	matter	how	many	changes	you	make,	 the	final	result	will	be	a	hospital,	and	
not, for example, a theme park! However, in IT development, you may indeed start a
project to create something like a hospital and end up with something like a theme
park.

So, based on the fact that we can have incremental delivery in IT development projects,
let’s	exploit	this	opportunity	with	a	lifecycle	like	the	on	in	the	next	figure.

There’s no real prediction in this lifecycle, as instead of predicting the product and
relying on that prediction, we have short iterations in which we create increments of
the	product.	Each	iteration	is	focused	on	a	few	features	that	seem	promising.	We	build	
each one, show the increment to the customer and end-users, receive their feedback,
and decide what to do in the next iteration. So, instead of predicting, we carry on
with the project and adapt to the feedback. This approach uses an adaptive lifecycle.
“Agile”	is	the	popular	name	for	adaptive	systems.

To create each increment, we need to iterate through all the development processes
during each time window, and that’s why we call those windows iterations, and this
way of development iterative development. In iterative development, each process
(such	 as	 design)	 is	 repeated	 multiple	 times	 for	 different	 elements	 in	 the	 product,	
instead of being run once for the whole product.

Normally, iterative development and incremental delivery occur together.

Iteration #1 Iteration #2 Iteration #3 Iteration #4 Iteration #5

● Analyze
● Design
● Construct
● Integrate
● Test

● Analyze
● Design
● Construct
● Integrate
● Test

● Analyze
● Design
● Construct
● Integrate
● Test

● Analyze
● Design
● Construct
● Integrate
● Test

● Analyze
● Design
● Construct
● Integrate
● Test

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

1. The Agility Concept 5

1.1.2.1	 Fixed-scope	vs.	fixed-duration	iterations
In	your	opinion,	is	it	better	to	have	fixed-scope	iterations	or	fixed-duration ones?

Theoretically,	both	of	them	can	work,	but	in	practice,	fixed-duration	iterations	are	supe-
rior,	because	keeping	the	scope	of	the	iteration	fixed,	can	have	the	following	results:
• You may spend too much time on each feature and add too many bells and whist-

les.	Having	a	fixed	duration	continuously	pushes	you	to	focus	on	the	most	valuable	
things	first.

• The time you need to complete the scope is usually longer than you expect, which
makes	 the	 iterations	 longer	 and	 reduces	 the	 number	 of	 feedback	 loops.	 When	
there’s less feedback, there will be less adaptation.

So,	that’s	why	almost	all	Agile	methods	have	fixed-duration	iterations,	and	they	usually	
insist on respecting these timeboxes. A timebox	is	a	window	with	a	maximum	(or	fixed)	
amount of time, which isn’t extended under any circumstances (because if you extend
it once, you will do it all the time).

1.1.2.2 Duration of iterations
Now that the iterations are supposed to be timeboxed, how long should that be for?

We	can	receive	feedback	at	any	time,	but	the	structured	feedback	we	receive	at	the	end	
of each iteration is key. Therefore, shorter iterations give us more structured feedback,
and therefore, more opportunities for adaptation. On the other hand, each iteration
needs to have enough time to produce a number of features worthy of a serious review
with the customer, which means that they can’t be too short.

In the early days of the Agile systems, 4 to 8 weeks seems like a good idea. Nowadays,
shorter durations are more acceptable. The maximum acceptable duration is 4 weeks
in most systems, and durations as short as 1 week seem practical for the current tech-
nologies.

1.1.2.3	 Same	duration	or	different	durations
In your opinion, is it better to have the same duration for all iterations, or to keep them
flexible?

Having the same duration is more disciplined and instills regularity. In most cases,
there’s no real need to decide about the duration of each timebox separately, which
is why most systems set the same duration for all iterations. You can revise this time-
boxed duration, but you won’t decide about the duration of each iteration separately.

1.1.2.4 What happens inside iterations?
An iteration is a period of time in which we repeat the development processes. How do
you do that, though?

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

6 Agile Scrum Handbook

Here are the two possibilities:

The one on the left goes through the development processes and runs each of them
for all the features that belong to the iteration. Maybe we can call it mini-predictive.

The one on the right goes through the features, one or a few at a time, and runs all
the	development	processes	for	each	of	them.	We	can	consider	it	a	mini-mini-predictive	
system (i.e., almost not predictive).

We	prefer	the	second,	feature-based	option,	mainly	because	it’s	the	one	that’s	compa-
tible with timeboxed iterations.

When	there’s	a	maximum	duration,	we	may	not	be	done	with	everything	at	the	end	
of the iteration, which means that with the feature-based approach there are a few
features we won’t be done with, while with the other approach, we won’t be done with
one or more of the development processes of each of the features, which means that
we won’t have any usable output at the end of the iteration and we won’t be able to
demonstrate it and receive feedback.

Iteration Iteration

Analyze

Design

Construct

Integrate

Test

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Iteration Iteration

Analyze

Design

Construct

Integrate

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

1. The Agility Concept 7

1.1.2.5 Increment vs. deliverable
Each increment is a deliverable, but not every deliverable is an increment.

We	use	the	term	“increment”	to	refer	to	the	increments	of	the	product,	which	are,	in	
the	case	of	IT	development,	different	versions	of	working	software.	Each	new	incre-
ment is a usable version of the same product but with more features, and it has to be
usable to enable reliable feedback.

In contrast, a deliverable can be almost anything you produce in your project. For
example, in a predictive project, the upfront design and upfront plan are deliverables
that can’t be considered increments of the product.

Since being Agile is fashionable, some people just call their deliverables increments
and claim to be Agile based on that.

1.1.2.6 Iterations vs. cycles
Every iteration is a cycle, but not every cycle is an iteration.

An iteration is a special type of cycle wherein we repeat our development processes
as well as our management processes. Many systems have cycles, but those cycles
only repeat the management processes and not necessarily the development proces-
ses. The big, monthly cycle and the small, weekly cycle in P3.express, the stages in
PRINCE2®, and the phases in the PMBOK® Guide are all examples of that.

To	make	this	difference	clearer,	imagine	a	cycle	that	has	its	own	planning,	monitoring	
and controlling, and closing. The fact that these managerial processes are repeated is
the reason their containers are called cycles. Now, imagine it’s a predictive project, and
one	cycle	is	about	specifying	the	requirements,	the	next	cycle	is	about	designing	the	
product, and so on. This is a cyclic system without any iterations.

Unfortunately, some people think that as long as they can identify cycles in their
projects, they can call them iterative and hence Agile, which is not correct. Even worse
than mistaking managerial processes for development processes, some people just
call arbitrary time periods in their projects iterations, and consider, for example,
weekly	“iterations”	when	there’s	no	real	iteration	of	any	processes	in	them.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

8 Agile Scrum Handbook

1.1.2.7 Testing and quality in agile
The	following	diagram	shows	an	over-simplified	schema	of	the	way	testing	is	done	in	
each approach:

Most of the testing activities are at the end of a predictive project, which is when we’re
probably	late	and	under	a	lot	of	pressure	to	finish	the	project	as	soon	as	possible.	This	
pressure	may	result	in	dropping	some	of	the	tests	and	compromising	on	quality.

How about adaptive systems, then?

Well,	 this	problem	doesn’t	exist	 in	adaptive	 lifecycles	because	testing	 is	done	conti-
nuously, and so it doesn’t matter when we stop the project, as we will always have the
right ratio of testing.

There	are	other	differences	also.	For	example,	the	nature	of	adaptive	systems	makes	it	
almost essential to have automated tests. Automated tests may not cover every single
line of code, and there’s an optimum test code coverage that we need to have in our
project. Test code coverage is the ratio of the lines of code tested by automated tests
to the total number of lines.

1.2 Selecting a Development Approach

Each of the predictive and adaptive lifecycles has advantages and disadvantages. The
right choice depends on many factors, but the most important one is the nature of the
product.

You	should	ask	two	essential	questions	before	deciding	about	the	type	of	lifecycle	you	
need for your project:
1. Does it need to be adaptive? If you don’t need to be adaptive, a predictive lifecycle

is more straightforward, more structured, and more predictive. An adaptive system

Iteration #1 Iteration #2 Iteration #3 Iteration #4 Iteration #5

Analyze Design Construct Integrate Test

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

1. The Agility Concept 9

is needed when there is a risk of starting with the idea of creating something like a
hospital and ending up with something like a theme park.

2.	Can it be adaptive?	This	question	is	even	more	important	than	the	previous	one.	
To be adaptive, you must have the possibility of developing iteratively and delive-
ring incrementally in order to receive feedback and adapt. Let’s think of a construc-
tion project once again: Can you design the building iteratively? For example, can
you design the foundation of the building without designing the rest of it, which is
needed to determine the amount of load on the foundation? The answer is simply
no. It’s not possible to have iterative development (with the meaning we have for it
in this context) for a construction project. Furthermore, incremental delivery is not
possible in most situations because, on the one hand, the subsets of a building are
not usable, and on the other hand, the feedback generated by one subset may not
be applicable to the rest. So, we can’t use an adaptive lifecycle to build a building
(although, don’t confuse this with interior design and decoration, or even renova-
tion, for which we may be able to use an adaptive system).

The main message is that the decision between a predictive and an adaptive approach
is not simply a matter of good and evil, but rather it depends on several factors. They
are both valid approaches, and each of them is more suited to some types of product.

For practice, think about an IT project for upgrading the operating systems of 300
computers in an organization, or an IT project for creating a networking infrastructure
for	a	very	large	organization	with	offices	in	six	locations.	In	your	opinion,	which	type	of	
development lifecycle is more suitable for these two projects?

1.3 Is Agile Only Suitable for IT Development?

Most of the examples in this book, as well as other resources about Agile, are about IT
development projects. Does that mean that Agile is limited to IT development projects?

1.3.1 Projects
There are some people who claim that Agile can be used for every type of project, and
the same people usually claim that it’s the only correct way of doing projects. They are
usually people who have not experienced any serious project other than non-critical
IT development ones. In reality, there are many types of project where an adaptive
method is either not needed or not possible because we can’t develop them iteratively
and deliver them incrementally.

Aside from the simple fact that Agile is not the one absolute truth and cannot be used
in	every	project,	we	can	still	consider	the	range	of	projects	that	can	benefit	from	an	
adaptive system. Is it limited to IT development, or are there other suitable types?

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

10 Agile Scrum Handbook

It	may	be	possible	to	use	Agile	in	some	other	types	of	project,	but	it	requires	a	profes-
sional,	structured	effort,	which	doesn’t	seem	to	have	been	done	yet.	There	are	some	
non-IT projects that claim to be Agile, but they usually mistake the meaning of Agility
and are victims of the Cargo Cult	effect. Notwithstanding this, IT development will
probably remain the best type of project for adaptive methods.

1.3.2 Programs
Everything said so far has been about projects,	but	things	are	different	when	it	comes	
to programs. According to MSP®, which is a program management method from the
same	family	as	PRINCE2® and ITIL®, projects may be either adaptive or predictive, but
programs always have to be adaptive. This is so because projects are about products,
while	programs	are	about	results.	We	can	predict	how	to	build	products,	but	we	can’t	
predict how to achieve results.

1.3.3 Operations
Project	management	methods	always	start	by	defining	what	a	project	is,	because	they	
are only applicable to projects and not to programs, portfolios, or business as usual
(operations). This has never become a tradition in Agile systems – they don’t insist on
being used in projects, and some people have been using them in operations. This has
its roots in IT development, where there’s no clear line between projects (major chan-
ges) and operations, where minor changes are applied to the product. The extreme
version of this notion is visible in DevOps, where the project side (development) and
business as usual side (operations) are merged into one.

1.4 Is Agile Faster?

The	word	 “agile”	 implies	 that	 these	methods	 are	 faster.	While	 it	 is	 very	 difficult	 to	
confirm	or	reject	this	hypothesis,	there’s	one	concept	that	really	helps	in	Agile	projects,	
and it’s not about the speed with which we develop, but about the set of features we
need to develop (the scope).

Think of an IT project that is supposed to be developed using a predictive method.
One or a few customer representatives would be responsible for identifying and
communicating	the	requirements.	They	know	that	if	they	miss	a	requirement,	it	will	be	
expensive and troubling to add them in the future, and therefore, they do their best to
identify	all	requirements.	As	it	turns	out,	they	become	too	creative	in	this	area	and	add	
requirements	that	add	insufficient	value.	These	extra	features	require	more	time	and	
resources, and also make the product more complicated, which is a serious problem
for future maintenance and expansions.

In an adaptive system, on the other hand, the customer representatives are not forced
to	come	up	with	all	 the	requirements	upfront,	and	 the	chances	are	 therefore	 lower	

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

1. The Agility Concept 11

that	strange	requirements	will	be	added	to	the	list.	Even	when	there	are	such	requi-
rements, a proper adaptive development system at least helps the representatives
understand their value so they can leave them for last, or even remove them.

In practice, an Agile project that is run properly has the chance of having a smaller
scope, which makes the project faster and less complicated.

As	 an	 example,	 in	 2002,	 Standish	Group	 reported	 the	 following	 rate	 of	 use	 for	 the	
features of four of their internal applications:

Always used: 7%
Often used: 13%
Sometimes used: 16%
Rarely used: 19%
Never used: 45%

Imagine how much faster their projects could have been, and how much simpler their
products could have been, if those never-used and rarely-used features had not been
included. This is, of course, only one example of a few applications in one organization,
but	the	overall	trend	may	not	be	so	different.

1.5 Is Agile New?

Agile	is	usually	advertised	as	the	new	approach.	The	use	of	the	term	“Agile”	to	refer	to	
adaptive lifecycles is certainly new, but what about the lifecycle itself?

It’s	difficult	to	imagine	a	long	history	of	human	beings	with	many	projects	and	programs	
that have been done without any form of adaptive lifecycles. Think of a very popular
type of initiative (project or program) in the olden days: going to war. Could you manage
to wage a war using a predictive approach? Did they plan and design everything at the
beginning? Certainly not. You may have a high-level plan (which is more like a strategy
than a plan) and manage the war one battle (iteration) at a time, and based on the
outcome of each battle, adapt for the rest of the initiative. It’s not a pleasant example,
but a clear one that shows that adaptive lifecycles aren’t all that new.

So, what is it that is new? It’s mainly the use of adaptive systems in IT development
and	the	name	“Agile”	that	are	new.	In	the	old	days,	IT	development	projects	were	very	
different	and	required	a	precise,	predictive	method.	Later	on,	as	computers	evolved,	
the nature of those projects and their audiences changed. In most cases, predictive
systems weren’t a great choice anymore, but practitioners continued using them. That
was the case until a group of people involved in those projects started reinventing the
adaptive method.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

	Colophon
	Contents
	1. The Agility Concept
	1.1 The Development Approaches
	1.1.1 The predictive approach
	1.1.2 The adaptive approach

	1.2 Selecting a Development Approach
	1.3 Is Agile Only Suitable for IT Development?
	1.3.1 Projects
	1.3.2 Programs
	1.3.3 Operations

	1.4 Is Agile Faster?
	1.5 Is Agile New?

	2. Scrum
	2.1 Scrum as a Framework
	2.2 Scrum as a Wrapper
	2.3 The Scrum Structure
	2.3.1 People
	2.3.2 Events
	2.3.3 Artifacts

	2.4 Scaled Scrum
	2.4.1 Roles
	2.4.2 Events
	2.4.3 Artifacts

	3. Crystal
	3.1 The Cockburn Scale
	3.2 Frequent Release
	3.3 Osmotic Communication
	3.4 Walking Skeleton
	3.5 Information Radiators
	3.5.1 Escaped defects
	3.5.2 Progress information
	3.5.3 Niko-Niko calendar

	4. Extreme Programming
	4.1 Daily Routine
	4.1.1 Pairing
	4.1.2 Assignment
	4.1.3 Design
	4.1.4 Write test
	4.1.5 Code
	4.1.6 Refactor
	4.1.7 Integrate
	4.1.8 Go home!
	4.1.9 Stand-up meetings
	4.1.10 Tracking

	4.2 Spiking
	4.3 The Nature of Items
	4.3.1 The two rules
	4.3.2 INVEST
	4.3.3 User stories

	4.4 Estimating
	4.4.1 Ideal-time
	4.4.2 Story points
	4.4.3 T-shirt sizes
	4.4.4 Velocity
	4.4.5 Planning poker
	4.4.6 Triangulation
	4.4.7 Affinity estimation
	4.4.8 Re-estimating

	4.5 Feedback loops
	4.6 The Planning Onion

	5. DSDM®
	5.1 Project Constraints
	5.2 Upfront Planning
	5.3 MoSCoW Prioritization
	5.4 Exceptions
	5.5 Self-Organization
	5.6 Contract Types

	6. Kanban
	6.1 Visualizing
	6.2 Limiting WIP
	6.3 Pull vs. Push

	7. Philosophizing!
	7.1 Extreme Programming Ideas
	7.1.1 Customer bill of rights
	7.1.2 Programmer bill of rights
	7.1.3 Values

	7.2 DSDM® Ideas
	7.2.1 Philosophy
	7.2.2 Principles

	7.3 Scrum Ideas
	7.3.1 Pillars
	7.3.2 Values

	7.4 The Agile Manifesto
	7.4.1 Statement #1
	7.4.2 Statement #2
	7.4.3 Statement #3
	7.4.4 Statement #4
	7.4.5 The Principles

	About the Author
	Index

