Numerical Methods for
Ordinary Differential Equations

Numerical Methods for
Ordinary Differential Equations

C. Vuik P. van Beek F. Vermolen J. van Kan

VSSD

Related titles published by VSSD:

Numerical methods in scientific computing, J. van Kan, A. Segal and F. Vermolen, xii
+ 279 pp., hardback, ISBN 978-90-71301-50-6

http://www.vssd.nl/hlf/a002.htm

In Dutch:

Numerieke Wiskunde voor Technici, J.J.I.M. van Kan; 128 pp
ISBN 9 78-90-407-1151-0

http://www.vssd.nl/hlf/a002.htm

Numerieke methoden voor differentiaalvergelijkingen, J. van Kan, P. van Beek, F.
Vermolen, K. Vuik, x + 122 pp. (Dutch version of this volume)
http://www.vssd.nl/hlf/a018.htm

© VSSD
First edition 2007

Published by VSSD

Leeghwaterstraat 42, 2628 CA Delft, The Netherlands

tel. +31 15 27 82124, telefax +31 15 27 87585, e-mail: hif @vssd.nl
internet: http://www.vssd.nl/hlf

URL about this book: http://www.vssd.nl/hlf/a026.htm

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of the publisher.

Printed version: ISBN-13 978-90-6562-156-6

Electronic version: ISBN-13 978-90-6562-170-2
NUR 919

Keywords: numerical analysis, ordinary differential equations

Preface

In this book we discuss several numerical methods for solving ordinary differential equa-
tions. We emphasize those aspects that play an important role in practical problems.
In this introductory text we confine ourselves to ordinary differential equations with the
exception of the last chapter in which we discuss the heat equation, a parabolic partial
differential equation. The techniques discussed in the introductory chapters, for e.g. in-
terpolation, numerical quadrature and the solution of nonlinear equations, may also be
used outside the context of differential equations. They have been included to make the
book self contained as far as the numerical aspects are concerned. Chapters, sections and
exercises marked * are not part of the Delft Institutional Package.

This text is an English version of a Dutch original “Numerieke Methoden voor Diffe-
rentiaalvergelijkingen”. I would like to thank Jos van Kan for translating the Dutch text
into English and Hisham bin Zubair for correcting the English of this book.

Delft, July 2007
C. Vuik

Contents

Preface

1

Introduction

1.1 Some historical remarks L oo
1.2 What is numerical mathematics?
1.3 Why numerical mathematics?
1.4 Roundingerrors e
1.5 Landau’s O-symbol
1.6 Some important theorems from analysis
1.7 Summary e e
1.8 EXercises v i e e

Interpolation
2.1 Introduction
2.2 Linearinterpolation oL
2.3 Lagrangianinterpolation
2.4 Interpolation with function values and derivatives *
24.1 Taylor polynomial
2.4.2 Interpolationingeneral
2.4.3 Hermitian interpolation
2.5 Interpolation withsplines
2.6 SUMMATY o oot e e e
277 EXEICISES . . . v v vt e e

Numerical differentiation
3.1 Introduction e
3.2 Simple difference formulae for the first derivative
3.3 General formulae for the first derivative
3.4 Relation between difference formulae and interpolation *
3.5 Difference formulae of higher order derivatives
3.6 Richardson’s extrapolation
3.6.1 Introduction.
3.6.2 Practical errorestimate

vi

11
11
11
13
16
16
17
17
20
22
23

Contents

3.6.3 Formulae of higher accuracy from Richardson’s extrapolation *
377 Summary ... oL e
3.8 EXErcises e

Nonlinear equations

4.1 Introduction
42 Asimplerootfinder oL oo
4.3 Fixed pointiteration
4.4 The Newton-Raphsonmethod
4.5 Systems of nonlinear equations
4.6 Summary e e e e e e
47 EBXercises

Numerical quadrature

5.1 Introduction e e
5.2 Simple numerical quadrature formulae 0oL
5.3 Newton-Cotes formulae
54 Gauss’ formulae™ L
55 Summary e
5.6 EXErCiSes v i e e e e e e

Numerical time integration of initial value problems

6.1 Introduction
6.2 Theory of initial value problems
6.3 Single-stepmethods
6.4 Test equation and amplification factor,
6.5 Stability
6.6 Local and global truncation error, consistency and convergence
6.7 Global truncation error and error estimates
6.8 Numerical methods for systems of differential equations
6.9 Stability of numerical methods for test systems
6.10 Stiff differential equations
6.11 Multi-step methods®
6.12 Summary e
6.13 EXerciseso i

The finite difference method for boundary value problems

7.1 Introduction
7.2 The finite difference method oL 0oL
7.3 Some concepts from Linear Algebra
7.4 Consistency, stability and convergence
7.5 Condition of the discretization matrix
7.6 Neumann boundary condition.
7.7 The general problem™
7.8 Convection-diffusion equation

vii

35
36
36

37
37
37
39
41
45
45
45

47
47
47
52
57
59
59

60
60
60
62
66
66
69
75
78
81
88
94
96
97

viii Numerical Methods for Ordinary Differential Equations

7.9 Nonlinear boundary value problems
7.10 Summaryo
711 EXErCiSes . . . o v v v v i e e e

8 The instationary heat equation™
8.1 Introduction
8.2 Derivation of the instationary heat equation
8.3 Thediscretized equation
84 Summary e

Literature

Index

113
113
113
114
116

118

120

I1roduction

1.1 Some historical remarks

Modern applied mathematics started in the 17th and 18th century with scholars like
Stevin, Descartes, Newton and Euler. Numerical aspects found a natural place in the
analysis but the expression “numerical mathematics” did not exist at that time. However,
numerical methods invented by Newton, Euler and at a later stage by Gauss still play an
important role even today.

In the 17th and the 18th century fundamental laws were formulated for various subdo-
mains of physics, like mechanics and hydrodynamics. These took the form of simple
looking mathematical equations. To the disappointment of many, these equations could
be solved analytically in a few special cases only. For that reason technological develop-
ment has been only loosely connected with mathematics. The introduction and availability
of the modern digital computer has changed this. Using a computer it is possible to gain
quantitative information with detailed and realistic mathematical models and numerical
methods for a multitude of phenomena and processes in physics and technology. Appli-
cation of computers and numerical methods has become ubiquitous. Statistical analysis
shows that non-trivial mathematical models and methods are used in 70% of the papers
appearing in the professional journals of engineering sciences.

Computations are often cheaper than experiments; experiments can be expensive, danger-
ous or downright impossible. Real life experiments can often be performed on a small
scale only and that makes their results less reliable.

1.2 What is numerical mathematics?

Numerical mathematics is a collection of methods to approximate solutions of mathemat-
ical equations numerically by means of finite computational processes.

In large parts of mathematics the most important concepts are mappings and sets. In nu-
merical mathematics we have to add the concept of computability. Computability means
that the result can be obtained in a finite number of operations (so the computation time
will be finite) on a finite subset of the rational numbers (because a computer has only
finite memory).

In general the result will be an approximation of the analytic solution of the mathemati-
cal problem, since most mathematical equations contain operators based on infinite pro-
cesses, like integrals and derivatives. Moreover, solutions are functions whose domain
and image may (and usually do) contain irrational numbers.

2 Numerical Methods for Ordinary Differential Equations

Because, in general, numerical methods can only obtain approximate solutions, it makes
sense to apply them only to problems that are insensitive to small perturbations, in other
words to problems that are stable. The concept of stability belongs to both numerical
and classical mathematics. An important instrument in studying stability is functional
analysis. This discipline also plays an important role in error analysis: the difference
between numerical approximation and exact solution.

Calculating with only a finite subset of the rational numbers has many consequences. For
example: a computer cannot distinguish between two polynomials of sufficiently high
degree. Consequently we cannot trust methods based on the main theorem of algebra (i.e.
that an n-th degree polynomial has exactly n complex roots). Errors that follow from the
use of finitely many digits are called rounding errors. We shall pay some attention to
rounding errors later on in this chapter.

An important aspect of numerical mathematics is the emphasis on efficiency. Contrary
to ordinary mathematics, numerical mathematics considers an increase in efficiency, i.e.
a decrease of the number of operations and/or amount of storage needed, an essential
improvement. Progress in this aspect is of great practical importance and the end of this
development has not been reached yet. Here the creative mind will meet many challenges.
On top of that, revolutions in computer architecture will overturn much conventional wis-
dom.

1.3 Why numerical mathematics?

A big advantage of numerical mathematics is that it can provide answers to problems that
do not admit analytical solutions. Consider for example the integral

/1
/\/ 1 + cos? xdx.
0

This is an expression for the arc length of one arc of the curve y = sinx. There is no
solution in closed form for this integral. A numerical method, however, can approximate
this integral in a very simple way. An additional advantage is, that a numerical method
only uses evaluation of standard functions and the operations: addition, subtraction, mul-
tiplication and division. Because these are just the operations a computer can perform,
numerical mathematics and computers form a perfect combination.

An analytical method gives the solution as a mathematical formula, which is an advantage.
From this we can gain insight in the behavior and the properties of the solution, and
with a numerical solution (that gives the function as a table) this is not the case. On the
other hand some form of visualization may be used to gain insight in the behavior of the
solution. To draw a graph of a function with a numerical method is usually a more useful
tool than to evaluate the analytical solution at a great number of points.

1. Introduction 3

1.4 BRounding errors

A computer uses a finite representation of real numbers. These are stored in a computer
in the form
+0.dd,...d,- B°,

in which d; >0 and 0 < d; < B. We call this a floating point number (representation) in
which 0.d,d,...d, is called the mantissa, B the base and e (integer) the exponent. Often
we have 3 = 2 (binary representation) and n = 24 (single precision). In double precision
we have n = 56. We say that the machine computes with n-bit (or n-digit) precision.

Let forx e R
0.d,...d, B° <x<0.dd,...(d, + 1) B¢,

where for simplicity we assume that x is positive. Rounding x means, that x will be
replaced with the floating point number closest to x, which we shall call fI(x). The error
caused by this process is called rounding error. Let us write

fl(x) =x(1+€). (1.1)

We call |fl(x) — x| = |ex| the absolute error and W = |g| the relative error. The

difference between the floating point numbers enclosing x is f¢~". Rounding gives
| f1(x) —x| < 3B, so for the absolute error we have

1
e < _ efn.
x| < 38
Because |x| > B¢! (since d; > 0) we have for the relative error:
le| <eps (1.2)

with the computer’s relative precision eps defined by
1
eps = Eﬁl—”. (1.3)

From 3 = 2 and n = 24 it follows that eps =~ 6 x 1078, so in single precision we calculate
with approximately 7 decimal digits.

Figure 1.1 shows the distribution of the floating point numbers 0.1d,d;-B¢; e=—1,0,1,2
in base 2 (binary numbers). These floating point numbers are not uniformly distributed
and there is a neighborhood of 0 that contains no floating point number. A computational
result lying within this neighborhood is called underflow. Most machines give a warning,
replace the result with O and continue. A computational result larger than the largest
floating point number that can be represented is called overflow. The machine warns and
halts.

How do computers execute arithmetical operations in floating point arithmetic?

4 Numerical Methods for Ordinary Differential Equations

Figure 1.1 Distribution of £0.1d,d, - B¢, B =2,e=—1,0,1,2.

Central processors are very complex and usually the following model is used to simu-
late reality. Let o denote an arithmetic operation (+,—, x of /) and let x and y be floating
point numbers. Then the machine result of the operation xoy will be

z=fl(xoy). (1.4)

The exact result of x oy will not be a floating point number in general, hence an error
results. From formula (1.1) we get

z={xoy}(1+e), (1.5)
for some € satisfying (1.2) and z # 0.

Suppose x and y are numbers approximated by the floating point numbers fI(x) and fI(y),
so fl(x) =x(1+¢), fl(y) =y(1+¢,). We wish to calculate x o y. The absolute error in
the calculated result f1(f1(x)o fI(y)) satisfies:

oy = fI(f1(x) o fIY)] < [xoy = fL(x) o fIY)| + |f1(x) f1(y) = fI(f1(x) o f1(¥))]-
(1.6)
From this expression we see that the error consists of two terms. The first term is caused
by an error in the data and the second one by converting the result of an exact calculation
to floating point form.

We shall give a few examples to show how rounding errors may affect the result of a cal-
culation. After that we shall give general computational rules regarding the propagation
of rounding errors.

Example 1.4.1

Let us take x = % andy = % and carry out the calculations on a system that uses § = 10
and a precision of 5 digits. In Table 1.1 you will find the results of various calculations
applied to fI(x) = 0.71429 x 10° and fI(y) = 0.33333 x 10°. We shall show how the
table has been created. After normalization we find for the addition

FI(x) + fl(y) = (71429 4 .33333) x 10° = 0.1047620000... x 10
This result has to be rounded to 5 digits:

FI(fL(x) + f1(y)) = 0.10476 x 10",

1. Introduction 5

Table 1.1 Absolute and relative error for various calculations.

operation result exact value | absolute error | relative error
x+y | 0.10476 x 10! 22/21 0.190 x 10=% | 0.182 x 10~*
x—y | 0.38096 x 10° 8/21 0.761 x 1073 | 0.200 x 104
xxy | 0.23809 x 10° 5/21 0.523x 107> | 0.220 x 10~*
x+y | 0.21429 x 10! 15/7 0.429 x 10~* | 0.200 x 10~*

The exact value isx+y = % =1.0476190518... So the absolute error is 1.0476190518... —

0.10476 x 10" ~0.190 x 10~ and the relative error is % ~0.182x 1074,

The error analysis of the other three operations follows the same lines.
Example 1.4.2

In this example we will use the same numbers x and y and the same precision as in the
previous example. Further we use u = 0.714251, v =98765.1 and w =0.111111 X 1074,
so fl(u) = 0.71425, fI(v) = 0.98765 x 10° and w = 0.11111 x 10~4. These numbers
have been chosen in such a way that we can clearly illustrate what problems we may ex-
pect with rounding errors. In Table 1.2 x — u has a small absolute error but a large relative
error. If we divide x — u by a small number w or multiply it with a large number v, the
absolute error increases, whereas the relative error is not affected. On the other hand,
adding a larger number u to a small number v results in a large absolute error but only a
small relative error. We shall show how the first row has been created. The exact result

Table 1.2 Absolute and relative error for various calculations

operation result exact value absolute error | relative error
X—u 0.40000 x 10~% | 0.34714 x 10+ | 0.528 x 107 0.152

(x—u)/w | 0.36000 x 10 0.31243 x 10! 0.476 0.152

(x—u) xv | 0.39506 x 10! 0.34287 x 10! 0.522 0.152
u+v 0.98765x 10° | 0.98766 x 10° | 0.814x 10° | 0.824 x 107>

isu=0.714251 and x —u = % — 714251 = 0.3471428571.... x 1074, whereas fI(u) =
0.71425 x 10° and f1(x) — f1(u) = 0.71429 — 0.71425 = 0.0000400000 x 10°. Normal-
ization gives fI1(f1(x) — fI(u)) =0.40000 x 10~*. From this we obtain the absolute error:
(x—u) — FI(fI(x) — fl(u)) = (.3471428571... — .40000) x 10~* ~ 0.528 x 10~5 and the

relative error:
0.528..x107>
0.3471428..x10~% ™~ 0.152.

It is interesting to note, that the large relative error has nothing to do with the limitations of
the floating point system (the subtraction of fI(x) and fI(u) is without error in this case)
but is due only to the fact that the data is represented in no more than 5 decimal digits. The

6 Numerical Methods for Ordinary Differential Equations

zeros that remain after normalization in the single precision result fI(fI(x) — fl(u)) =
0.40000 have no significance, only the digit 4 is significant; the zeros that have been
substituted are a mere formality and represent no information. This phenomenon is called
loss of significant digits. The loss of significant digits has a large impact on the relative
error, because of division by the small result.

A large relative error sooner or later will have some unpleasant consequences in later
stages of the process, also for the absolute error. If we multiply for example x — u by a
large number, then we immediately also generate a large absolute error, together with the
large relative error we already had. As an example we look at the third row of the table.
The exact result is (x —u) x v = 3.4285594526000.... Calculating fI(fI(x) — fI(u)) x

Fl(v) gives:
FUFI) = f1(u)) X f1(v) = 0.4 x 10 x 0.98765 x 105 = 0.3950600000 x 10"

After rounding we get: fI(fI(fl(x) — fl(u)) x fI(v)) = 0.39506 x 10'. This yields the
absolute error: 3.42855990000460..... — 0.39506 x 10! ~ 0.522 and the relative error:
% ~ 0.152. Suppose we add something to (x —u) x v, for example: y?; because

= % and therefore y?> = %, the result of this operation due to the large absolute error
is indistinguishable. In other words, for the reliability of the result it does not make a
difference whether we would omit the last operation and by doing that alter the numerical

process. So we conclude that something is fundamentally wrong in this case.

Almost all numerical processes exhibit loss of significant digits for a certain set of input
data; one might call such a set ill conditioned. There also are numerical processes that
exhibit these phenomena for all possible input data. Such processes are called unstable.
One of the objectives of numerical analysis is to identify unstable processes and classify
them as useless. Or improve them in such a way that they become stable.

Computationalules@brierrorfiropagation

In the analysis of a complete numerical process, in each subsequent step we have to
interpret the accumulated error of all previous steps as a perturbation of the original data.
Moreover, in the result of this step we have to take into account the propagation of these
perturbations together with the floating point error. After a considerable number of steps
this error source will be more important than the floating point error most of the time.
(In the previous example of (x — u) X v even after two steps!) In that stage the error in
a numerical process will be largely determined by the *propagation’ of the accumulated
errors. The computational rules to calculate numerical error propagation are the same as
those to calculate propagation of error in measurements in physical experiments. There
are two rules: one for addition and subtraction and one for multiplication and division.

The approximations of x and y will be denoted by ¥ and § and the (absolute) perturbations
ox=x—Xand by=y—7J.

a) Addition and subtraction.
(x4+y) = (¥+7¥) = (x—%) + (y —F) = dx+ Sy, in other words, the absolute error
in the sum of two perturbed terms is equal to the sum of the absolute perturbations.

1. Introduction 7

A similar rule holds for differences: (x—y) — (¥ —§) = x — dy. Often the rule is
presented in the form of an inequality (also called an error estimate.): |(x £ y) —
(F£9)| < [6x]+[6y].

b) This rule does not hold for multiplication and division. Efforts to derive a rule for
absolute error will lead nowhere. But one may derive a similar rule for the relative
error.

The relative perturbations &, and &, are defined by ¥ = x(1 — &), and similarly

for y. For the relative error in a product xy we have: xy;y)fy"‘ =2 7x(17§;)y(17£”) =
&+ & — 6.y R £, + €, assuming &, and &, are negligible compared to 1. In words:
the relative error in a product of two perturbed factors is approximately equal to the
sum of the two relative perturbations. A similar rule can be derived for division.

Formulated as an error estimate we have |"yx;}fy~| <& + gyl

Identification of & with fI(x) and § with fI(y) enables us to explain clearly various phe-
nomena in floating point computations using these two simple rules.
1.5 Landau’s O-symbol

In the analysis of numerical methods estimating the error is of prime importance. It is
often more important to have an indication of the order of magnitude of the error than a
precise expression. To save ourselves some tedious work we use Landau’s O-symbol.

Definition 1.5.1 Let f and g be given functions. We say f(x) = O(g(x)) (“f(x) is big Oh
of g(x)”) for x — 0, if there exist positive r and finite M such that

f)I <Mg(x)| forall xe[-rr].

To estimate errors we often use the following computational rules.

Computational rules
If f(x) = O(x”) and g(x) = O(x?) for x — 0, with p > 0 and ¢ > 0 then

a) f(x)=0(x*) for all s with 0 < s < p.
b) of(x)+ Bg(x) = O(x™nir4}) for all ar, B € R.
©) f(x)g(x) = O(x"").

d) L = o) if0 < s < p.

[

1.6 Some important theorems from analysis

In this section we recollect some important theorems from analysis that are often used
in numerical analysis. In this book we use the notation Cla,b] for the set of all func-
tions continuous on the interval [a,b] and C?[a, b] for the set of all functions of which all
derivatives up to the p-th exist and are continuous.

8 Numerical Methods for Ordinary Differential Equations

Theorem 1.6.1 (Intermediate value theorem) Assume f € Cla,b]. Let f(a) # f(b) and
let F be a number between f(a) and f(b). Then there exists a number ¢ € (a,b) such that

fle)=F.

Theorem 1.6.2 (Rolle’s theorem) Assume f € Cla,b] and f differentiable on (a,b). If
f(a) = f(b), then there exists a number ¢ € (a,b) such that f'(c) = 0.

Theorem 1.6.3 (Mean value theorem) Assume f € Cla,b] and f differentiable on (a,b),
then there exists a number c € (a,b) such that f'(c) = it [Z 5(a)

Theorem 1.6.4 (Taylor polynomial) Assume f : (a,b) — R is (n+ 1) times differen-
tiable. Then for all c¢,x € (a,b) there exists a number & between ¢ and x such that

F(x) = Pu(x) + R (x),

in which the Taylor polynomial P,(x) is given by

_ _op(e) 4 BT @=9)")
A = 10+ =) () + L o)1 4 B g
and the remainder term Ry (x) is:
R _ (x—c)”+1 (1)

Proof
Take ¢, x € (a,b) with ¢ # x and let K be defined by:

7= £+ (=) + O3 ey Eo Y o ket)
Consider the function

_ . AV (x_t)2 1" (x=1)" (n) i+l
F) = 50~ 10+ =00+ S5 0 EE D0 ey

2!

By (1.7) we have F(c) = 0 and F (x) = 0. Hence, by Rolle’s theorem there exists a number
& between ¢ and x such that F'(&) = 0. Further elaboration gives

P& = OO FE e r@e-ar+
(n+1) (n)
pet (E B gy LEO g0y ke 2 -
(n+1)
= O ke gy =o

So K = ! ((::)lg’?) , which proves the theorem. X

1. Introduction 9

Theorem 1.6.5 (Taylor polynomial of two variables) Let f : D C R — R be continu-
ous with continuous partial derivatives up to and including order n+ 1 in a ball B C D
with center ¢ = (c,,c,) and radius p. Then for each X = (x,,x,) € B there exists a
0 € (0,1), such that

f(x) = Ba(x) + Ru(x),

in which the Taylor polynomial P,(X) is given by

Il
-

Il
By

Il

Proof
Let for fixed x and h with ||h|| < p, the function F : (—1,1) — R be defined by:

F(s) = f(x+sh).

Because of the differentiability conditions satisfied by f in the ball B, F is (n+ 1) times
continuously differentiable on the interval (—1,1) and F¥(s) is given by (check this!)

Expand F into a Taylor polynomial about 0. This yields:

n n+1

F(s)=F(0)+sF'(0)+...+ —F"(0) + CESI

oy F”+1(6s),

for some 0 € (0,1). Now substitute s = 1 into this expression and into the expressions for
the derivatives of F and the result follows. X

Example
For n =1 we get:

d d
PL(x) = fley) + (3, cnaj:(cl,czmxzc2>3j;<c1,c2>,

and for the remainder term: R, (x) is O(||x —¢||?).

10 Numerical Methods for Ordinary Differential Equations

Theorem 1.6.6 (Power series of) Let x € R with |x| < 1. Then:

1—x

L oy
k=0

Theorem 1.6.7 (Power series of ¢*) Let x € R. Then:

1.7 Summary

In this chapter the following subjects have been discussed

1.8

Numerical mathematics

Rounding errors

Landau’s O-symbol

Some important theorems from analysis

Exercises

. Let f(x) = x*. Determine the second order Taylor polynomial of f about the point

x = 1. Compute the value of this polynomial in x =0.5. Give an error estimate and
compare this with the actual error.

. Let f(x) = ¢*. Give the n-th order Taylor polynomial about the point x = 0 and also

give the remainder term. How large should n be chosen in order to make the error
less than 10~° in the interval [0,0.5]?

. We use the polynomial P, (x) = 1 — $x? to approximate f(x) = cos(x) in the interval

[—3,%]. Give an upper bound for the error in this approximation.

. Letx = %, y= % We calculate with a precision of 3 (decimal) digits. Express x

and y as floating point numbers. Compute fI(fI(x)o fI(y)), xoy and the rounding
error taking o = +, —, x, / respectively.

rpolation

2.1 Introduction

In practice we often have to determine intermediate values from a limited number of
measurements (interpolation) or to predict values outside the range of measurements (ex-
trapolation) Let us take as an example the number of chickens in Dutch chicken farms.
In Table 2.1 the numbers have been tabulated (in millions) from 1970 every fifth year up
to 1995. How can we use these numbers to estimate the number of chickens in inter-
mediate years, e.g. in 1992 or predict the number in the year 20007 In this chapter we
shall consider a number of interpolation and extrapolation methods to tackle this problem.
Also in visualizing images on a computer screen it is possible to save much memory by

Table 2.1 Number of chickens (in millions) in the Netherlands (source: NRC 09-12-1998).

year 1970 | 1975 | 1980 | 1985 | 1990 | 1995
number | 53 68 82 92 94 92

not storing every pixel but only a limited number. Through these points a curve can be
constructed to render a more or less realistic image on the screen.

As a final application consider computing the values of a trigonometric function on a
computer. Calculating such a value is time consuming. A solution: store a number of pre-
calculated function values in memory and determine from these the values at intermediate
points in a cheap way.

2.2 Linear interpolation

The simplest way to interpolate is zeroth degree interpolation. Suppose the function value
at a certain point is known. We choose the value of the approximation in a neighborhood
of this point equal to this known value. A well known example is the prediction that
tomorrow’s weather will be the same as today’s. This prediction appears to be correct in
80% of all cases. (In the Sahara this percentage is even higher.)

A better way of interpolation is a straight line between two points (see Figure 2.1).
Suppose we know the value of a function f at the points x, and x,: f(x,) and f(x,). If we
lack any further information it seems plausible to take as function value in x the value of
the linear function (the graph of which is a straight line) through (x,, f(x,)), (x;,f(x,)).
It is easily shown, that this function is given by

X=Xy

p(x) = f(x) + (f(xy) = f (%))

X1 =%

11

12 Numerical Methods for Ordinary Differential Equations

Figure 2.1 Linear interpolation.

or
_ X*.Xl X=Xy
P = L)+ L)

The function p is a linear interpolation polynomial that is equal to f(x,) in x, and f(x,)
in x;. An obvious question is of course: how large is the error of linear interpolation
and on what does it depend? We can say something about this error if we know that the
interpolated function is at least twice continuously differentiable. Note: by [a, b,x,] we
mean the interval spanned by the extremes of the three values a, b, and x,,.

Theorem 2.2.1 Let x, and x, be points in [a,b], x, # x, and f € Cla,b]NC?(a,b). The
linear interpolation polynomial p of f in the nodes x,,,x, satisfies: for each x € [a,b) there
exists a & € (x,,x,,x) such that

n

£ = plx) = 3 (v) =) (6) @)

Proof
If x = x, or x = x, then f(x) — p(x) =0 and £ can be chosen arbitrarily. Assume x # x,,
and x # x,. For each x there exists a number g such that

f) =p(x) = qlx—xp) (x = x,) -

To find an expression for g consider the function

@(1) = f(t) = p(1) —q(r = x) (1 = x,) .

2. Interpolation 13

o satisfies ¢(x,) = ¢(x;) = ¢(x) = 0. By Rolle’s theorem, there exist at least two points
y and z in (xy,x,,X) such that ¢ (y) = ¢'(z) =0. Again by Rolle’s theorem there is a
& € (»,z) and hence & € (x,,x,,x) such that @' () =0. Because ¢ (1) = f" (t) — 2q this
means that g = %f"(é). X

If x & [xy,x,] we use the polynomial to extrapolate. Relation (2.1) is still the correct
expression for the error.

From this theorem an upper bound for linear interpolation follows:

[u—

F0) = p)] < gl =3 max [£" ()]

ée[xo,x]]

In many practical applications the values f(x,) and f(x,) are a result of measurements or
calculations. Hence these values may contain errors. Suppose that the absolute error is at
most €. The difference between the exact polynomial p and the perturbed polynomial p
is bounded by

X, — x|+ |x — x| c

P~ po)] < P
1 0

For interpolation this error is always bounded by €. For extrapolation the error may be
larger than €. Suppose x > x, then the additional inaccuracy is bounded by

The total error is the sum of the interpolation/extrapolation error and the measurement
error.

Example 2.2.1 (linear interpolation)

The value of the sine function has been given for 36° and 38° (see table). The linear
interpolation approximation for 37° gives a result of 0.601723. The difference with the
exact value is only 0.9 x 1074,

Table 2.2 The value of sino.

a sin o
36° | 0.58778525
37° | 0.60181502
38° | 0.61566148

2.3 Lagrangian interpolation

If there are more than two data points it makes sense to use those extra points too. An
obvious method is to use higher degree interpolation. Because a polynomial of degree

14 Numerical Methods for Ordinary Differential Equations

n contains n+ 1 independent parameters we need n 4 1 data points to construct an n-th
degree interpolation polynomial.

As a generalization of linear interpolation we consider the approximation of a function
f by a polynomial L,(x)) of degree at most n, such that the values of f and L, at n+ 1
different points x,x,...,X, coincide. This we call n-th order Lagrangian interpolation.

The polynomial L, satisfying these constraints is easy to find. It has a shape that is a clear
generalization of Equation (2.1):

n

La(x) = z f(xk)Lkn(x))

k=0
in which
(X = %g) e (=2) (X = Xpy g) (X — Xn)
X = Xg) oo (X =2) (X = 2y) (2 — X))

That this is the right polynomial will be clear from the following observations:

L, (x)= (

- Each L, is a polynomial of degree n,
- From L, (x;) = § it follows that L, (x;) = f(x;),k € {0,...,n}.

The polynomial L, is called Lagrangian interpolation polynomial. The polynomials L,
are called Lagrangian coefficients. They can also be written as:
o(x) -

with o(x) =[J(x-x,) -

Lial) = (x—x)0 (x;) i=0

Theorem 2.2.1 now can be generalized:

Theorem 2.3.1 Let x,, ...,x, be different node points in [a,b]. Let f € C"[a,b]NC" " (a,b)
and let L, be the Lagrangian polynomial generated by f and these node points. Then for
each x € [a,b] there exists a & € (xy, X, ...,Xn,X) such that

1)
(n+1)!°

f(x) =La(x) = (x =xg) .o (x = X5)

Proof:
The proof is completely analogous to that of Theorem 2.2.1. X

If we use Lagrangian interpolation on tabular values, the best results are obtained by
choosing the node points in such a way that x is in the (or an) innermost interval. Explain
why.

We want to know which errors may occur in higher order interpolation besides the inter-
polation error if the function values or tabulated values are not exact. Assume that the
error in the values is at most €. Then the error in the perturbed interpolation polynomial
is at most

i ‘Lkn('x) ‘8 .
k=0

n
Table 2.3 Upper bounds for ¥, |L,, (x)|.
k=0

2. Interpolation

X € [Xg, %] | X € [x,25] | X € [xy,X3] | X € [x3,%4] | X € [x4,Xs]
=111
=2 | 125 1.25
n=3 | 1.63 1.25 1.63
n=4 |23 1.4 1.4 2.3
n=>5| 3.1 1.6 1.4 1.6 3.1

15

If the nodes are equidistant, x, = x,, + kh, the value of 2 |L,, (x)| increases slowly with
n. In Table 2.3 the reader will find a number of upper bounds

In general one would expect the approximation error to decrease with increasing polyno-
mial degree. However, this is not always the case as the next example shows.

Example 2.3.1 (interpolation)

Consider the function H# on the interval [5,5]. We use the points x, = —5+ == '0k k=
0, ...,n as interpolation nodes. In Figure 2.2 you will find a graph of the function, together
with the 6th and 14th degree interpolation polynomials. Note that, on the interval [-3, 3],
the 14th degree polynomial approximation is better than that of degree 6. In the neighbor-

hood of the end points, however, the 14th degree polynomial exhibits large aberrations.

===

Figure 2.2 Interpolation of function ﬁ (=) with a 6-th degree Lagrangian polynomial (---) and

a 14-th degree Lagrangian polynomial (— - — - —).

16 Numerical Methods for Ordinary Differential Equations

Example 2.3.2 (extrapolation)

A similar phenomenon may occur in extrapolation. Consider the function % The n-
th degree interpolation polynomial is determined with nodes x, = 0.5 + %, k=0,...,n.
Let us plot the graphs of the function, the 6-th degree and the 10-th degree interpolation
polynomial on the interval [0.5, 1.8] (Figure 2.3). The polynomials and the function itself
are indistinguishable on the interval [0.5, 1.5]. With extrapolation (x > 1.5), however,
large errors occur. Again the largest error occurs in the 10-th degree polynomial.

2.4

22r- 7

0.4 | |
0.5 1 1.5 2

Figure 2.3 Extrapolation of function % (=) with a 6-th degree Lagrangian polynomial (---) and a
10-th degree Lagrangian polynomial (—-— - —).

2.4 Interpolation with function values and derivatives *

2.4.1 Taylor polynomial

A well known method to approximate a function by a polynomial is Taylor’s method. As
an approximation method it is not used very often in numerical mathematics, but instead
is used quite often for the analysis of numerical processes.

In many cases the approximation of the Taylor polynomial gets better with increasing
polynomial degree. But this is not always true. We show this in the following example:

Example 2.4.1 (Taylor polynomial)

We want to approximate the function f(x) = % in x = 3 by a Taylor polynomial of degree

n about the node point x = 1. (Note that x = 3 is outside the region of convergence of the
Taylor series.) The derivatives are given by: f®)(x) = (=1)*k!x=*+1)_ The n-th degree

2. Interpolation 17

Taylor polynomial is:

n n

pu) = X, OG-kt = ¥ (D - 1

k=0 k=0

The values of p,(3) as an approximation of f(3) = 1 are tabulated in Table 2.4. The
approximation gets less accurate with increasing polynomial degree.

Table 2.4 Value of the Taylorpolynomial in x = 3 with increasing degree (n).

n Jo[1]2]3]4]5]6]7
pn(3) [113511]21]43]-85

2.4.2 Interpolation in general

In general, given a function f we look for a polynomial, such that at a number of different
node points x, ..., X, not only the values of f and p coincide, but also the value of their
derivatives up to and including order m; at x;. (m; could be different for different nodal
points)
Suppose that f € C"[a,b] with m = Or£1a<x m;. Then p is the polynomial of lowest degree
<i<n
such that
d*p d*f .
W(xi) = W(xi) foreach i=0,1,...,n and k=0,1,...,m;.
Remarks

n
1. This polynomial is at most of degree M = 3, m; +n.
i=0

2. If n =0 then p is the Taylor polynomial about x,, of degree m,,.

3. If m; =0 then p is the n-th degree Lagrangian polynomial of f in the nodes x;,x, ..., X,.
As an example of general interpolation we consider in the next section the choice m; = 1.
The resulting polynomials are called Hermitian interpolation polynomials.

2.4.3 Hermitian interpolation

If besides the value of a function we also know the value of its derivatives at certain points,
we may use this data to construct an approximation polynomial of higher degree.

For instance assume that the function values and the value of the first derivative at two
different points are known. Then we have in fact 4 independent data items and we may
construct a 3-rd degree polynomial using this data.

So assume we have been given

(xovf,(xo)) (xlvfl(xl)))
(x0:.f (x0)) (xp, f (x1)) -

18 Numerical Methods for Ordinary Differential Equations

The third degree polynomial p; has to satisfy:

p3(x;) = f(x;) i=0,1,
p3(x;) = fj(xi) i=0,1.

In the same vein as the Lagrangian interpolation polynomials we may write this polyno-

mial as:
1

p3(x) = Z[f(xi)Hil(x) +f (xi)ﬁn ()],
i=0
with A
H1;1 (xj) = 51",') H1;1 (xj) =0,
Hil(xj)207 Hil(xj):5ij-
Polynomials based both on given function values and given derivatives are called Hermi-

tian interpolation polynomials.

The general expression for Hermitian interpolation polynomials containing function val-
ues and first derivatives is:

o) = 3)0 + 3)09,
in which ’
Hjn(x) = [l - 2(x_xj)Ljn(xj)]L§n(x)a
and

7,0 = (=)L,

We may show the correctness of this polynomial as follows: H, and H jn are polynomials
of degree 2n+ 1. In node x; we have H,,(x,) =0if k # j. If k = j:

H,,(x)) = [(1=2(x;—x,)L, (x)]LE, (x;) = 1.
From A, (x,) = 0 we have H,, | (x;) = f(x,).

To show that the derivatives coincide at the node points we remark that H;” is given by:

!

Hjn(x) = _2Ljn(xj)L§n(x)+

[1=2(x =)L, (6)]2L , (X)L, (x) .

By substitution we may simply check that H}n (x,) =0 for k=0,1,...,n. The derivative
of H n 18 given by

!

Hj,(x) = L3 (x) +2(xc =)L, ()L (x) -

Hence I:[;n(xk) = 6, and therefore Hénﬂ(xj) =f (x;).

Theorem 2.4.1 If f € C*"*2[a,b] then there exists a & € (Xgs --+s Xn,X) sUCh that

3 _ (x—x0)2....(x—xn)2 (2n42)
700 = Hy () = S0 Rt ponia

2. Interpolation 19

Proof:
The proof of this theorem is analogous to that of Theorem 2.2.1. The auxiliary function
is chosen as follows:

o) =f(t) —Hy, (1) —

—x)2. . (t—x,)?
((;_XZ;zm.E;_xn))z [F(x) = Hyyyy (%)] -

It can be proved that ¢ (¢) has 2n+ 2 different zeros in (Xgs -1 Xns X).

We shall clarify the choice for Hermitian interpolation instead of Lagrangian in the fol-
lowing two examples.

Example 2.4.2 (seismic waves)

In oil exploration one often uses seismic waves. A simple model for wave propagation is
described by the following set of ordinary differential equations:

d

d—); = c¢sinf,

d

d_f = —ccos@,
do dc
E = —d—ZSlne.

The position is denoted by (x,z) while 6 is the angle between wave front and x-axis.
We suppose that the propagation speed ¢ depends on the vertical position only and that
it is known at a finite number of measuring points. In solving this system we need an
approximation of ¢(z) in the intermediate points. Piecewise linear interpolation in each
interval has the consequence, that the derivative ‘;—2 does not exist in the nodes. This may
lead to large errors in the solution. If both ¢ and Z_Z are known in the nodes we may use
the third degree Hermitian interpolation in each interval. Then the first derivative exists
also at the nodes.

Example 2.4.3 (visualization)

Suppose a finite number of points of a figure is known and we want to draw a smooth
curve through them. Piecewise linear interpolation has sharp angles in the graph in the
nodes and this often leads to an unrealistic representation. We get a better result using
Hermitian interpolation.

Suppose the graph of the function f(x) = H#’ x € [0,4] is used to visualize half of a
symmetric hill. To save memory and computation visualization programs utilize sim-
ple building blocks. Assume that third degree polynomials are such simple blocks. In
Figure 2.4 the graph has been approximated with several interpolation polynomials. The
resulting figure using piecewise linear polynomials does not resemble a hill even remotely.
Hermitian interpolation on the same nodes gives a much better result. This however is not
an honest comparison, because third degree interpolation uses twice as many datapoints.
Therefore we also consider the third degree Lagrangian interpolation on the intervals [0,2]
and [2,4]. Note that on the interval [2,4] the function and the polynomial coincide. How-
ever, due to the large jump in the derivative at x = 2 this result is also unusable.

20 Numerical Methods for Ordinary Differential Equations

1.2 T T T T T T T
1 = B
AN
\-
\
A\
A\
08 N |
\
W
\\
N\ i
06F SN
\GA
\ \
\
NI
0.4 VN _
NN
\
\
N
A\ N
0.2 N0 B
N
\v N\
N
0 | | | | | T
0 0.5 1 15 2 2.5 3 3.5 4
Figure 2.4 Interpolation van ﬁ —— function, -- - piecewise linear interpolation, — — — Hermi-
tian interpolation, — - — - — piecewise third degree Lagrangian interpolation.

2.5 Interpolation with splines

In the previous sections we saw that approximation of a function on an interval may lead
to several problems. Often it is better to divide the interpolation interval into subintervals
and to construct an interpolation polynomial on each subinterval. One problem with this
approach is the lack of smoothness at the interface of two subintervals. Hermitian inter-
polation is a remedy for this problem, but for this to work one has to know the derivative
at the interface. If the data is gathered by measurement, the derivative at the nodes are
often unknown. A way to circumvent this problem is to use splines.

A spline is a piecewise polynomial that is connected smoothly in the nodes. We shall only
consider first and third order splines.

Definition

For f € Cla,b] the interpolation spline s of degree 1 is a function s € C|a, b] such that for
a partitioning a = x, < X, ... < x, = b of the interval [a,b], s is linear on each subinterval
[, X4 1] and s(x;) = f(x;).

Note that an interpolation spline of degree 1 consists just of piecewise linear interpolation
polynomials. But a spline of degree three has several additional properties.

A spline of degree 3, also called a cubic spline, consists of piecewise third degree poly-
nomials. In the nodes the value is equal to the function value and the first and second

2. Interpolation 21

derivative are continuous.

Definition
For f € Cla, D] the interpolating spline s of degree 3 has the following properties:

a. sis a third degree polynomial s;on each subinterval [xj,xj+1], j=0,...,n—1,

b. s(x;) = f(x;), j=0,...,n,

d. sy(xy) =s,_; (xa) =0.
Note that s € C*[a,b]. The conditions under d could be replaced with other conditions.

We shall demonstrate how to determine such an interpolating spline. We express s as:

_ 3 2
s;(x) =a;(x—x;)"+b;(x—x;)"+c;(x—x;)+d; . (2.2)
Define h; =x; | —x; and f; = f(x;). From b we have
d;=f; 2.3)
Next we use the various conditions from c:
Los; (X541) = 8j51 (Xj41)
From (2.2) we have s’} (x) = 6a;(x—x;) +2b;. On substitution we obtain:
s;g (x;)=2b; for x=x;, and
$;(X;41) =6a;h;+2b; for x=x;
We may now express a; in b ;:
1

2. 8;(%511) = 831 (Xj0)
From this a]-h§ + bjh§ +ch;+ dj = fj+1. Substitution of aj,bj and d yields the

following expression for c ;:

S b

J h; J 3

2.5)

22 Numerical Methods for Ordinary Differential Equations

! !
3. 8(X51) = Sj.01 (Xj1)

Therefore 3a jh§ +2b jh ; +c j=c On substitution:

Jj+1-

fin =1, 2bitb

Byl =by)+2b b+ Lo,
J
_Jmwmli o 2t
2 g T TR
hj a 3

After simplification:

fj+2_fj+1 fj+1_fj
hibi+2(hj+h;)b +hi b ,=3(—).
B B

This relation holds from j =0 up to j =n —2. So we get n — 1 equations in n+ 1
unknowns b, ..., b,. From d we determine b, = b, = 0. The resulting system then

becomes:
2(hy+h) h, b,
hy 2(hy+hy) hy b,
hn72 2(hn72 + hnfl) bnfl
HL=fi ik
3(zhl L lhOO)

[
3(n—1 -]/117172 2)

From this system we may calculate the values b;. From this we may determine
from (2.4) and ¢ from (2.5).

Example 2.5.1 (visualization)

We consider the same example as in the previous section. In Figure 2.5 we have used
a cubic spline. We divided the interval into 6 subintervals. Note that the interpolation
quality is better than that of Hermitian interpolation. Another advantage is that function
values at the nodes give sufficient information already. It is not necessary to know the
value of the derivatives at the nodes.

2.6 Summary
In this chapter the following subjects have been discussed:

- Linear interpolation
- Lagrangian interpolation

2. Interpolation 23

Figure 2.5 Interpolation of ﬁ — function, - - cubic spline.

- Interpolation with derivatives

- Taylor polynomial
- Interpolation in general
- Hermitian interpolation

- Spline interpolation.

2.7 Exercises

1. Determine the second degree Lagrangian polynomial of f(x) = 1/x using nodes
Xy =2,x, =2.5and x, = 4. Approximate f(3) with this polynomial.

2. Determine s(%), in which s is the cubic spline with nodes 0, 1 and 2 for the function
f(x) = x. Do this also for f(x) = x°.

